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Abstract

Distributed systems are increasingly common and it is therefore important to
ensure that they are error-free. We are interested in how they exchange infor-
mation and more particularly in the property of synchronizability. A system
is synchronizable if its behaviour when considering asynchronous communi-
cation is the same as in the case of synchronous communication. Systems
are modelled as networks of communicating automata and we focus on peer-
to-peer and mailbox communications. By reducing the Post correspondance
problem to synchronizability, we give an alternative proof that synchroniza-
bility is undecidable for peer-to-peer systems and prove that it is undecidable
for mailbox systems with �nite states.



Contents

1



1 Introduction

We observe an increasing use of distributed systems in di�erent domains,
such as embedded systems, multiprocessor hardware architecture, commu-
nications protocols, web applications, etc. It is necessary to ensure proper
functioning and absence of errors, especially for the most critical which could
cause damage in the event of malfunctioning. This requires an understan-
ding of how these systems work and what the sources of errors may be. A
distributed system is composed of many components, named peers. Peers
exchange messages to coordinate and reach a common objective. Usually,
such communications are asynchronous. This entails that a message sent
can be stored for an inde�nite time before it is read. This asynchronous
communication is error prone, because it is di�cult to implement and to
execute in a reproducible way. Whereas synchronous communication, where
a message is sent and received simultaneously, can easily be executed in a re-
producible way. For the same underlying system, the number of possible be-
haviours is, in general, greater with asynchronous communication than with
synchronous communication. Since synchronous communication is easier, we
are interested in identifying all those systems whose synchronous behaviour
is the same as the asynchronous one. In other words all those systems where
the type of communication does not in�uence the overall behaviour. This
property is called synchronizability.

�Real� distributed systems may be rather complex, combining advanced
hardware features as well as involved management algorithms. Our focus is
on communication, therefore we will abstract away from any implementation
details. We choose to work with networks of communicating automata [?, ?],
that are a standard model for distributed systems and they allow to rea-
son about communication protocols [?, ?]. Communicating automata, in-
tuitively, are �nite state automata where arc labels represent channels and
allow to exchange messages in a network of automata or peers. Communica-
tion between peers can take di�erent forms, here we only consider commu-
nication via FIFO bu�ers, either used in a peer-to-peer fashion (one bu�er
per pair of machines), or operating as a mailbox (one bu�er per receiver).
As in [?, ?, ?, ?], we assume that these bu�ers are unbounded because in
general, we cannot compute the number of messages that the bu�er is likely
to contain (the problem is undecidable).

Most problems on synchronous communicating automata are decidable,
as for example the problem of reachability, while conversely, the majority of
problems on asynchronous communicating automata are undecidable. The
intrinsic complexity of asynchronous distributed systems and the simplicity
of synchronous ones lead us to the notion of synchronizability: a system is
synchronizable if any asynchronous behaviour can be mimicked by a syn-
chronous one that contains the same send actions in the same order. This
notion has already been studied, particularly in [?] by Basu and Bultan,
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where the authors claim the decidability of synchronizability. Nonetheless,
in [?] Finkel and Lozes show that previous claim is false. They prove the
undecidability of the synchronizability for peer-to-peer systems and give a
counter-example that the synchronizability for mailbox systems is not deci-
dable. We will comment more on their work in Section ??. Summing up, the
synchronizability for peer-to-peer systems is undecidable but the problem for
mailbox systems is still open.

The objective of this report, is, thus, to assess the decidability

of the synchronizability for mailbox systems. We prove the undeci-
dability of the synchronizability for mailbox systems, with some additional
constraints, resorting to the Post correspondence problem which is an unde-
cidable problem. Moreover, the study of the decidability of synchronizability
led us to an alternative proof of undecidability, di�erent from the existing
one, for peer-to-peer systems. Networks of communicating automata can be
big and complex, so it is normal to use tools to analyse them. We use a tool
and adapt it to meet our needs (STABC, discussed in Section ??) to check
whether a system is not synchronizable.

Overview. In Section ??, we de�ne networks of communicating automata,
synchronizability, and the Post correspondence problem. In Section ??, we
introduce the tools: CADP and STABC and describe their uses and the
changes we have made to STABC. Sections ?? and ?? concern the decidabil-
ity of the synchronizability problem for peer-to-peer systems and mailbox
systems, respectively. In Section ??, we comment on previous works dis-
cussing the notion of synchronizability. Finally, Section ?? concludes this
report and opens up some perspectives.

2 Preliminaries

2.1 Communicating automata

A communicating automaton is a �nite state machine that performs only two
basic operations to move from a state to another: either sending or receiving
messages from other communicating automata. A network of communicating
automata, or simply network, is a parallel composition of a �nite set P of n
peers. In a network, communicating automata can communicate with each
other. We consider a �nite set of messages M . Each message in M consists
of a sender, a receiver, and some �nite information. We denote ap→q ∈ M
the message sent from peer p to peer q with information a. For all messages
ap→q, a′p

′→q′ ∈M , we assume the following:

1. p ̸= q, i.e., a peer can not send a message to itself,

2. if a = a′ then p = p′ and q = q′, i.e., each information can be sent by
a unique sender and can be received by a unique receiver.
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Thanks to the second assumption, we will sometimes omit the peers and
simply write a for a message ap→q in M . An action is the sending or the
reception of a message, we denote !m the sending and ?m the reception
of m ∈ M . Therefore, we de�ne Actp = {!ap→q | ap→q ∈ M, q ∈ P} ∪
{?aq→p | aq→p ∈M, q ∈ P} the set of actions for peer p.

De�nition 1 (Network of communicating automata).
Let N = ((Ap)p∈P ,M, F ) be a network of communicating automata, where:

� For each p ∈ P , Ap = (Sp, s
p
0,M,→p) is a communicating automaton

with
� a �nite set Sp of states

� sp0 ∈ Sp a distinguished initial state

� →p ⊆ Sp ×Actp × Sp a transition relation;

� F ⊆
∏

p∈P Sp is the set of global �nal states, where
∏

denote the
cartesian product.

Example 2.1 (Network). Consider network N = ((A1,A2,A3),M, F ) de-
picted in Figure ??. Its initial state is (s10, s

2
0, s

3
0), the set of global �nal states

is F = {(s11, s21, s33)}, and �nally the set of messages is M = {a1→3; b2→3}.

0 1
!a1→3

A1

0 1
!b2→3

A2

0 1 2
?a1→3 ?b2→3

A3

Figure 2.1: Network N

Remark 1. Notice that state spi is depicted by a circled i in the �gure. Final
states are depicted with a double circle.

Di�erent communication types can be associated to the same network.
We call a system a network together with a communication type. A sys-
tem can communicate synchronously or asynchronously. In a synchronous
communication, each message sent is immediately received. A message can
not be sent if it can not be received. In an asynchronous communication
instead, messages are stored in FIFO (First In First Out) bu�ers, which can
be bounded or unbounded. If a bu�er is of size k, we can talk about a k-
bounded bu�er. A FIFO bu�er is an ordered data structure where data are
stored in a queue. When an element is added, it is stored at the tail of the
queue, and when a element is removed, it is taken from its head. Several
models of systems are possible.
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� Synchronous (denoted 0): there is no bu�er in the system, messages
are immediately received when there are sent.

� Peer-to-peer (denoted 1 - 1): there is a bu�er for each pair of peers,
where one element of the pair is the sender and the other is the receiver.
A network with a peer-to-peer type of communication composed of n
peers contains n× (n− 1) bu�ers.

� Mailbox (denoted * - 1): there are as many bu�ers as peers, each peer
receives all its messages in a unique bu�er, no matter the sender. A
network with a mailbox type of communication composed of n peers
contains n bu�ers.

We use con�gurations to describe the state of a system and its bu�ers.

De�nition 2 (Con�guration). Let N = ((Ap)p∈P ,M, F ) be a network. A
0 con�guration (respectively a 1 - 1 con�guration, or a * - 1 con�guration)
is a tuple C = ((sp)p∈P , B) such that :

� sp is a state of automaton Ap, for all p ∈ P

� B is the content of all bu�ers:

� an empty tuple for a 0 con�guration,

� a tuple (b12, . . . , bn(n−1)) for a 1 - 1 con�guration and

� a tuple (b1, . . . , bn) for a * - 1 con�guration,

where each bu�er content bi ∈M∗ is a �nite sequence of messages.

We write ε to denote an empty bu�er, and B∅ to denote that all bu�ers
are empty. C0 = ((sp0)p∈P , B

∅) is the initial con�guration. We write B{bi/b}
the tuple of bu�ers B where bu�er bi is substituted by b.

Several systems can be de�ned according to the type of communication.

De�nition 3 (Synchronous System). Let N = ((Ap)p∈P ,M, F ) be a net-
work. The synchronous system N0 associated with N is the least binary
relation −→

0
over 0 con�gurations such that

sp
!ap→q

−−−→p s
′p sq

?ap→q

−−−−→q s
′q

(0 SEND)
((s1, . . . , sp, . . . , sq, . . . , sn), B∅)

!ap→q

−−−→
0

((s1, . . . , s′p, . . . , s′q, . . . , sn), B∅)

In a synchronous system, there is no bu�er. A message can be sent if
a transition !ap→q exists in the sender automaton p and the corresponding
reception ?ap→q exists in the receiver automaton q. As a result, the commu-
nication takes places and both automata p and q change their state.

In order to simplify the de�nitions of traces and language (given in what
follows), and without loss of generality, we choose to label the transition with
the sending message !ap→q.
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De�nition 4 (Peer-to-peer System). Let N = ((Ap)p∈P ,M, F ) be a net-
work, and let k ∈ N+ ∪ {∞} be a �xed bu�er bound. The peer-to-peer
system N1−1k associated with N and k is the least binary relation −−−→

1−1k

over 1− 1 con�gurations such that:

� for each con�guration C = ((sp)p∈P , B), B = (bpq)p,q∈P where bpq ∈ M∗

is of length |bpq| ≤ k.

� −−−→
1−1k

is the least transition induced by:

sp
!ap→q

−−−→p s
′p |bpq| < k

(1-1 SEND)
((s1, . . . , sp, . . . , sn), B)

!ap→q

−−−→
1−1k

((s1, . . . , s′p, . . . , sn), B{bpq/bpq · a})

sq
?ap→q

−−−−→q s
′q bpq = a · b′pq

(1-1 REC)
((s1, . . . , sq, . . . , sn), B)

?ap→q

−−−−→
1−1k

((s1, . . . , s′q, . . . , sn), B{bpq/b′pq})

De�nition 5 (Mailbox System). Let N = ((Ap)p∈P ,M, F ) be a network
and let k ∈ N+ ∪ {∞} be a �xed bu�er bound. The peer-to-peer system
N∗−1k associated with N and k is the least binary relation −−−→

∗−1k
over ∗ − 1

con�gurations such that:

� for each con�guration C = ((sp)p∈P , B), B = (bp)p∈P where bp is of
length |bp| ≤ k.

� −−−→
∗−1k

is the least transition such that :

sp
!ap→q

−−−→p s
′p |bq| < k

(*-1 SEND)
((s1, . . . , sp, . . . , sn), B)

!ap→q

−−−→
∗−1k

((s1, . . . , s′p, . . . , sn), B{bq/bq · a})

sq
?ap→q

−−−−→q s
′q bq = a · b′q

(*-1 REC)
((s1, . . . , sq, . . . , sn), B)

?ap→q

−−−−→
∗−1k

((s1, . . . , s′q, . . . , sn), B{bq/b′q})

In peer-to-peer and mailbox systems, a sending can be done if the transi-
tion !ap→q exists in the state of sender automaton p and if the target bu�er
is not full. The message is put on the tail of the bu�er. A reception of a
message can be done if transition ?ap→q exists in receiver automaton q and if
this message is at the head of the bu�er. As a result, the message is removed
from the bu�er. Notice that, in mailbox systems, a same bu�er can con-
tain messages from di�erent senders, which, as we will see in the following,
imposes more constraints.

We describe the behaviour of a system with runs. A run is a sequence of
transitions starting from an initial con�guration C0.
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Example 2.2 (Bu�ers layout and run). We use network N of Example ??.
The topology of the network is described in Figure ??.

A1 A2

A3

Figure 2.2: Topology of Network N

Several bu�er layouts are possible according to the type of communication.

� (Synchronous communication) In system N0 , there are no bu�ers. Mes-
sages are directly read by the receiving peer.

� (Peer-to-peer communication) In system N1−1k , there is one bu�er of
size k per pair of peers. Figure ?? represents the system where the
bu�ers that are represented are the ones that are used for communica-
tions, namely b13 and b23.

A1 A2

A3

b1.3 b2.3

Figure 2.3: Bu�er layout of system N1−1

� (Mailbox communication) In system N∗−1k , there is one bu�er of size
k per peers. The Figure ?? represents the system with depicted the only
used bu�er b3.

A1 A2

A3

b3

Figure 2.4: Bu�er layout of N∗−1

Clearly each type of communication gives rise to di�erent runs. We give
an example of run for each type of communication.
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� (Synchronous communication) The only possible run is:

((s10, s
2
0, s

3
0), ∅)

!a1→3

−−−→
0

((s11, s
2
0, s

3
1), ∅)

!b2→3

−−−→
0

((s11, s
2
1, s

3
2), ∅)

� (Peer-to-peer communication) A possible run is:

((s10, s
2
0, s

3
0), {b13 = ε, b23 = ε}) !b2→3

−−−−→
1−1∞

((s10, s
2
1, s

3
0), {b13 = ε, b23 = b})

((s10, s
2
1, s

3
0), {b13 = ε, b23 = b}) !a1→3

−−−−→
1−1∞

((s11, s
2
1, s

3
0), {b13 = a, b23 = b})

((s11, s
2
1, s

3
0), {b13 = a, b23 = b}) ?a1→3

−−−−→
1−1∞

((s11, s
2
1, s

3
1), {b13 = ε, b23 = b})

((s11, s
2
1, s

3
1), {b13 = ε, b23 = b}) ?b2→3

−−−−→
1−1∞

((s11, s
2
1, s

3
2), {b13 = ε, b23 = ε})

� (Mailbox communication) A possible run is:

((s10, s
2
0, s

3
0), {b3 = ε}) !b2→3

−−−−→
∗−1∞

((s10, s
2
1, s

3
0), {b3 = b})

((s10, s
2
1, s

3
0), {b3 = b}) !a1→3

−−−−→
∗−1∞

((s11, s
2
1, s

3
0), {b3 = ba})

We remark that with the same sendings, we can not reach the same global
state with system N1−1∞ and N∗−1∞ . Indeed, as said earlier, mailbox com-
munication imposes more constraints. As we have one bu�er for A3, no
matter the sender, and this bu�er is a FIFO (First In First Out), we can
not receive a before b while b was sent before a.

Let com ∈ {0; 1 − 1k; ∗ − 1k} be the type of communication with k the
size of bu�ers, we de�ne −−→

com

∗ as the transitive re�exive closure of −−→
com

. We

denote with
?∗−−→
com

a sequence of receptions only and with
!ap→q

=⇒
com

a sequence of

the kind
!ap→q

−−−→
com

?∗−−→
com

, that corresponds to one send followed by zero or more

receptions.
In order to study the behaviour of systems, we de�ne the set of traces

and the associated language. A trace t is a sequence of actions.

De�nition 6 (Trace). Let N = ((Ap)p∈P ,M, F ) be a network and
com ∈ {0; 1 − 1k; ∗ − 1k} be the type of communication with k the size of
the bu�ers. T (Ncom) is the set of traces de�ned by

T (Ncom) = {act1 · . . . · acte | C0
act1−−→
com

C1
act2−−→
com

. . .
acte−−→
com

Ce}

where C0 is the initial con�guration.

Similarly, a send trace ts is a sequence of sendings.
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De�nition 7 (Send trace). Let N = ((Ap)p∈P ,M, F ) be a network and
com ∈ {0; 1 − 1k; ∗ − 1k} be the type of communication with k the size of
bu�ers. T s(Ncom) is the set of send traces such that

T s(Ncom) = {act1 · . . . · acte | C0
act1=⇒
com

C1
act2=⇒
com

. . .
acte=⇒
com

Ce}

where C0 is the initial con�guration.

For a synchronous system, the set of traces is the same as the set of send
traces, because of the labelling of the transitions.

Property 1. For all network N , we have T (N0) = T s(N0).

A �nal send trace tf is a sequence of sendings where the last con�gura-
tions reached contains a �nal global state.

De�nition 8 (Final send trace). Let N = ((Ap)p∈P ,M, F ) be a network
and com ∈ {0; 1− 1k; ∗ − 1k} be the type of communication with k the size
of the bu�ers. T f (Ncom) is the set of �nal send traces such that

T f (Ncom) = {act1 · . . . · acte | C0
act1=⇒
com

C1
act2=⇒
com

. . .
acte=⇒
com

Ce}

where C0 is the initial con�guration and Ce = (Sg, B) with Sg ∈ F .

Remark 2. In De�nition ??, we decide not to take into consideration the
content of bu�ers, di�erently to others papers, like [?], where the authors
study stable con�gurations, i.e., con�gurations where bu�ers are empty.

The language is the set of all possible �nal send traces of the system.

De�nition 9 (Language). Let com ∈ {0; 1 − 1k; ∗ − 1k} be the type of
communication where k is the size of bu�ers andNcom = (N ,−−→

com
) a system.

Its language is L(Ncom) = T f (Ncom).

Example 2.3 (Traces and language). We use network N of Example ??.
The set T (N∗−12) of system N∗−12 is composed of traces:

� !a1→3 · !b2→3 · ?a1→3 · ?b2→3

� !a1→3 · ?a1→3 · !b2→3 · ?b2→3

� !b2→3 · !a1→3

and of all pre�xes of these traces.
The set of send traces of this system is:

T s(N∗−12) = {!a1→3; !b2→3; !a1→3 · !b2→3; !b2→3 · !a1→3}

The set of �nal send traces of this system is:

T f (N∗−12) = {!a1→3 · !b2→3}
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Indeed, the send trace !b2→3 · !a1→3 does not allow to reach a �nal global
state, because after these sendings, the system is in con�guration

C = ((s11, s
2
1, s

3
0), {b3 = ba})

where A3 cannot reach state s32. Thus, the system cannot reach its global
�nal state, so this send trace is not a �nal send trace.
The language of system N∗−12 is L(N∗−12) = {!a1→3 · !b2→3}.

Remark 3. In what follows, we will sometimes consider networks N that
do not have �nal states, which amounts to having all �nal states. We notice
that in these cases, L(Ncom) = T f (Ncom) = T s(Ncom), i.e., their language
corresponds to their set of send traces.

2.2 Synchronizability Problem

A system is synchronizable if its asynchronous behaviour can be related to
its synchronous one. Thus, an asynchronous system is synchronizable if its
language is the same as the one obtained from the synchronous system. More
precisely:

De�nition 10 (Synchronizability). Let type ∈ {1 − 1; ∗ − 1} and N be a
network. A system Ntype∞ is synchronizable if and only if

L(Ntype∞) = L(N0)

The Synchronizability Problem is the decision problem of determining
whether a given system is synchronizable or not.

When a system is not synchronizable, we can be interested in its stability.
A system is k-stable if increasing the size of bu�ers does not change its
language. More precisely:

De�nition 11 (Stability). Let type ∈ {1− 1; ∗− 1} and N be a network. A
system is k-stable if and only if

∃k ∈ N+ such that L(Ntypek) = L(Ntype∞)

2.3 Post Correspondence Problem

We will use the Post Correspondence Problem (PCP) to prove that the
Synchronizability Problem is undecidable.

De�nition 12 (Word). Let Σ an alphabet, a word w = a1a2 . . . an ∈ Σ∗ is
a �nite sequence of symbols, such that ai ∈ Σ, ∀ i ∈ [1, n].

Let wa ∈ Σ∗ and wb ∈ Σ∗, andm,n ∈ N, such that wa = wa,1wa,2 . . . wa,m

and wb = wb,1wb,2 . . . wb,n. The concatenation of wa and wb, written wa ·wb,
corresponds to the word wa,1wa,2 . . . wa,mwb,1wb,2 . . . wb,n. We denote |w| the
size of the word w.
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De�nition 13 (Post Correspondence Problem). Let Σ be an alphabet with
at least two symbols. An instance (W,W') of PCP consists of two �nite
ordered lists of non-null words of the same length

W = w1, w2, . . . , wn and W' = w′
1, w

′
2, . . . , w

′
n

such that wi, w
′
i ∈ Σ∗ for all indices i ∈ [1, n]. A solution of this instance is

a �nite sequence of indices Sol = (i1, i2, . . . im) with m ≥ 1 and ∀ j ∈ [1,m],
ij ∈ [1, n], such that:

wi1 · wi2 · · · · · wim = w′
i1 · w

′
i2 · · · · · w

′
im

We can represent the input as a set of n blocks:

1 2 n

w1

w′
1

w2

w′
2

. . .
wn

w′
n

The PCP is an undecidable decision problem [?, ?].

Example 2.4 (Instance of PCP). Let Σ = {a, b}.
Input: W = a, b, abab and W ′ = ba, baa, b, i.e.,

1 2 3

a

ba

b

baa

abab

b

We have a solution for this instance with S = (2, 1, 3):

2 1 3

b

baa

a

ba

abab

b

where w2 · w1 · w3 = w′
2 · w′

1 · w′
3 = baabab.

3 Tools

We use some tools allowing to study networks of communicating automata
and verify properties such as synchronizability and stability. Notice that the
notion of global �nal state, and so the notion of �nal send traces are absent
in these tools. So, only in this section, the language of a system is de�ned
by the set of send traces.
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3.1 CADP

CADP1 is a generic toolbox for the design of synchronous concurrent sys-
tems [?], so it allows us to model and study our networks of communicating
automata. It based on concepts from CCS [?]. It takes the speci�cation of
the system in the LOTOS language [?].

Here, we use it to generate and visualize the set of send traces in the
form of state graphs, but also to compare these state graphs according to
an equivalence notion. It is directly called by STABC, and we seldom used
CADP tools directly.

3.2 STABC

STABC2 is a tool based on CADP, coded in Python. It takes as input
a network and determines if this network is synchronizable or k-stable by
calling CADP. CADP can manipulate only synchronizable systems, however
STABC generates LOTOS systems that encodes the bounded bu�ers. It
considers only mailbox systems.

It determines these properties according to an equivalence notion chosen
between branching, strong and trace (de�ned in [?]). It creates state graphs
of synchronous and asynchronous systems, considering either all messages or
only send messages, reduces it with the chosen equivalence notion before to
compare it, always according to this notion.

STABC claims synchronizability if the state graph obtained for the syn-
chronous system is equal to that obtained for the asynchronous system with
1-bounded bu�ers (property stated in [?]). To determine stability of a sys-
tem with k-bounded bu�ers, STABC compares state graph of this system
with the one of the system based on the same network with bu�ers of size
k + 1 (property stated in [?]).

We can write the pseudo-code of the algorithm used to determine syn-
chronizability and stability to understand it (Algorithm ??). We give to
STABC a network N , an equivalence notion eq and an integer kmax. We
write ∼eq to denote the equivalence between two systems according to the
equivalence notion eq. We write compute to indicate the building of state
graph of a system.

Note in this algorithm that STABC is based on properties that, as we
will see below, are not trustable. We actually modi�ed STABC to detect
non-synchronizability.

3.3 Modi�cations and uses

Theorem 2 in [?] claims that if the language of an asynchronous system with
1-bounded bu�ers is the same than the one of the synchronous system based

1https://cadp.inria.fr/
2http://convecs.inria.fr/people/Gwen.Salaun/Tools/index.html
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Algorithm 1: Pseudo-code of checkBruteForce()
compute N0

compute N∗−11

if N0 ∼eq N∗−11 then
return �synchronizable�

else
k = 1
while k ≤ kmax do

compute N∗−1k+1

if N∗−1k ∼eq N∗−1k+1 then
return �k-stable�

else
k ← k + 1

end

end

end

on the same network, then this system is synchronizable. More formally, for
a network N , if L(N0) = L(N∗−11) then L(N0) = L(N∗−1∞). This theorem
is used by STABC to determine the synchronizability.

A counter-example (Figure ??) in [?] demonstrates that this theorem is
false for mailbox systems.

A1
!a1→2 !a1→2 !b1→3

A2
?a1→2

?a1→2

!c2→3

!c2→3

?a1→2

?d3→2
!c2→3

?a1→2 ?a1→2 ?d3→2 !e2→1

A3

?c2→3

?b1→3

?b1→3

?c2→3

!d3→2

Figure 3.1: Counter-example 1 (from [?])

The message e2→1 can be sent only if bu�ers are at least of size 2. There-
fore, this network contradicts the theorem. Indeed, we have:

L(N0) = L(N∗−11) ̸= L(N∗−12)

We want to con�rm it using STABC. However, as mentioned earlier,
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Algorithm 2: Pseudo-code of checkMyStrat()
compute N0

compute N∗−11

if N0 ∼weak N∗−11 then
print �L(N0) = L(N∗−11)�

else
print �not synchronizable�

end

k = 1
while k ≤ kmax do

compute N∗−1k+1

if N∗−1k ∼weak N∗−1k+1 then
print �L(N∗−1k) = L(N∗−1k+1)�

else
print �not k-stable�

end

k ← k + 1
end

STABC uses this same theorem to determine synchronizability and compares
only the state graphs of the synchronous system and the asynchronous system
with 1-bounded bu�ers. Therefore, we need to modify this tool to verify the
validity of this counter-example, i.e., compares these state graphs but also
the one of the asynchronous system with 2-bounded bu�ers. Moreover, the
notion of equivalence that we want to use (which corresponds to the notion
of send trace) is the weak equivalence (de�ned in [?]). STABC is not able
to use it, but we can modify it to use this notion which is already present in
CADP.

Therefore, we de�ned a new function, checkMyStrat(), based on a func-
tion, checkBruteForce(), already implemented in STABC. checkMyStrat()
creates state graphs of the synchronous system and compares it with the one
of the asynchronous system with 1-bounded bu�ers. If they are di�erent,
the system is not synchronizable. Then, the asynchronous system with 1-
bounded bu�ers is compared with the asynchronous system with 2-bounded
bu�ers, and so on until it �nds a di�erence or it reach a bound passed as a
parameter of the function. Thus, with this new function, STABC can not say
if a system is synchronizable or k-stable (it would be necessary to compare
it to the system with unbounded bu�ers, which CADP cannot handle) but
can say if it is not. Algorithm ?? gives the pseudo-code for checkMyStrat()
function.

We have tested our function on the network of Figure ??. As expected,
our function indicates that the set of send traces of the synchronous system
is equal to that of the asynchronous system with a 1-bounded bu�er, and
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that the set of send traces of the asynchronous system with a 1-bounded
bu�er is di�erent from that of the asynchronous system with a 2-bounded
bu�er.

This theorem being false, Theorem 1 in [?], which claims a condition to
ensure stability (similar to the one of synchronizability), seems to be false as
well. This theorem claims that, if an asynchronous system with k-bounded
bu�ers has the same language as the same asynchronous system with bu�ers
of size k + 1, then this system is stable. More formally, for a network N , if
L(N∗−1k) = L(N∗−1k+1) then L(N∗−1k) = L(N∗−1∞).

We want to con�rm that this theorem is false, building a new counter-
example, depicted in Figure ??, inspired by the previous one, and testing it
with the modi�ed STABC.

A1
!a1→2 !a1→2 !a1→2 !b1→3

A2
?a1→2 ?a1→2 ?a1→2 !c2→3

!c2→3 ?a1→2

!c2→3

?a1→2

?a1→2

?d3→2

!c2→3

?a1→2 ?a1→2 ?a1→2 ?d3→2 !e2→1

A3

?c2→3

?b1→3

?b1→3

?c2→3

!d3→2

Figure 3.2: Counter-example 2

As expected, message e can be sent only with bu�ers of size 3 at least,
and so we have:

L(N0) ̸= L(N∗−11) = L(N∗−12) ̸= L(N∗−13)

that contradicts this theorem.

Remark 4. In the journal version of this paper [?], published in 2018, the
authors de�ne di�erently the notion of Asynchronous composition with FIFO
bu�ers. Theorem 1 with the new de�nition appears to be true.

The changes to STABC allowed us to detect some errors in the PCP
encodings that we tried while working on the conjectures of the following
sections.
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4 Synchronizability Problem for Peer-to-peer Sys-

tems

In this section, we show the undecidability of synchronizability for systems
with peer-to-peer communication. The proof is a reduction from PCP. We
encode an instance of PCP into a network of communicating automata. We
denote N = JW,W ′Kp2p the encoding of instance (W,W ′). We prove that a
solution to this instance exists if and only if

L(N0) ̸= L(N1−1∞)

4.1 Peer-to-peer Encoding of Post Correspondence Problem

The encoding of an instance (W,W') of PCP is the parallel composition of
four automata : AW , AW ′ , AL and AI . The topology of the network is
depicted in Figure ??.

AW AI

AW ′ AL

Figure 4.1: Topology of N

AW and AW ′ send a sequence of indices to AI and corresponding words
to AL. AI checks whether indices sent by AW and AW ′ are the same, and
AL does the same with letters.

Message ok allows to know if both comparisons, letters and indices, have
succeeded. If the comparison of letters succeed till the end of both sequences,
then AL can send a message ok to AI . Whenever AI fails, it goes to a state
where it can receive message ok. But, if comparisons of indices succeed till
the end, AI �nish in a state where it can not receive it.

The global �nal state of this encoding is reached when AW and AW ′ have
sent messages indicating the end of their words, when AI and AL succeeded
all their comparisons, and when AL have also sent message ok.

Notice that with synchronous communication, a message can not be sent
if it can not be received. Thus, if the instance of PCP has a solution, the
comparison of letters and the one of indices have to succeed. But within
synchronous communication, message ok can not be sent. Whereas within
asynchronous communication, message ok will be sent and the �nal global
state will be reached.
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More formally, we de�ne the encoding as follows:

De�nition 14 (Encoding of PCP in peer-to-peer system). Let (W,W') be
a PCP instance over Σ, where W = w1, . . . , wn and W ′ = w′

1, . . . , w
′
n. The

encoding of (W,W') is JW,W ′Kp2p = ((Ap)p∈P ,M, F ) where:

� P = (W,W ′, L, I);

� The set of messages is

M = {iW→I | i ∈ [1, n]} ∪ {$W→I} ∪ {αW→L | α ∈ Σ} ∪ {endW→L}∪

{i′W ′→I | i ∈ [1, n]} ∪ {$′W ′→I} ∪ {α′W ′→L | α ∈ Σ}∪

{end′W ′→L} ∪ {okL→I};

� AW = (SW , sW0 ,M,−→W ) where:

SW = {q0, qf , q$, qe} ∪ {qi,j | i ∈ [1, n], j ∈ [0, |wi| − 1] }
sW0 = q0

−→W= {q0
!iW→I

−−−−→ qi,0 | i ∈ [1, n]} (1)

∪ {qi,j
!αW→L

−−−−→ qi,j+1 |
α = wi,j+1, i ∈ [1, n], j ∈ [0, |wi| − 2]} (2)

∪ {qi,|wi|−1)
!αW→L

−−−−→ qf | α = wi,|wi|, i ∈ [1, n]} (3)

∪ {qf
!iW→I

−−−−→ qi,0 | i ∈ [1, n]} (4)

∪ {qf
!$W→I

−−−−→ q$} (5)

∪ {q$
!endW→L

−−−−−−→ qe}; (6)

� AW ′ = (SW ′ , sW
′

0 ,M,−→W ′) where:

SW ′ = {q0} ∪ {qi,j | i ∈ [1, n], j ∈ [0, |w′
i| − 1]} ∪ {qf , q$, qe}

sW
′

0 = q0

−→W ′={q0
!iW

′→I

−−−−→ qi,0 | i ∈ [1, n]} (7)

∪ {qi,j
!αW ′→L

−−−−−→ qi,j+1 |
α = w′

i,j+1, i ∈ [1, n], j ∈ [0, |w′
i| − 2]} (8)

∪ {qi,|w′
i|−1

!αW ′→L

−−−−−→ qf | α = w′
i,|w′

i|
, i ∈ [1, n]} (9)

∪ {qf
!iW

′→I

−−−−→ qi,0 | i ∈ [1, n]} (10)

∪ {qf
!$W

′→I

−−−−−→ q$} (11)

∪ {q$
!endW

′→L

−−−−−−→ qe}; (12)

17



� AL = (SL, s
L
0 ,M,−→L) where:

SL = {q0, qe, qe′ , qok, q∗} ∪ {qα|α ∈ Σ}
sL0 = q0
−→L= {q0

?αW→L

−−−−−→ qα | α ∈ Σ} (13)

∪ {qα
?α′W ′→L

−−−−−−→ q0 | α ∈ Σ} (14)

∪ {qα
?β′W ′→L

−−−−−−→ q∗ | β ∈ Σ, β ̸= α}

∪ {qα
?end′W

′→L

−−−−−−−→ q∗} (15)

∪ {q0
?α′W ′→L

−−−−−−→ q∗} ∪ {q0
?end′W

′→L

−−−−−−−→ q∗}

∪ {qα
?βW→L

−−−−−→ q∗ | β ∈ Σ} ∪ {qα
?endW→L

−−−−−−→ q∗ }

∪ {qe
?α′W ′→L

−−−−−−→ q∗ | α ∈ Σ} (16)

∪ {q∗
?mp→L

−−−−→ q∗ | mp→L ∈M} (17)

∪ {q0
?endW→L

−−−−−−→ qe } (18)

∪ {qe
?end′W

′→L

−−−−−−−→ qe′ } (19)

∪ {qe′
!okL→I

−−−−→ qok}; (20)

� AI = (SI , s
I
0,M,−→I) where:

SI = {q0, q$, q$′ , q∗} ∪ {qi | i ∈ [1, n]}
sI0 = q0
−→I={q0

?iW→I

−−−−→ qi | i ∈ [1, n]} (21)

∪ {qi
?i′W

′→I

−−−−−→ q0 | i ∈ [1, n]} (22)

∪ {qi
?k′W

′→I

−−−−−→ q∗ | i, k ∈ [1, n], i ̸= k}

∪ {qi
?$′W

′→I

−−−−−→ q∗ | i ∈ [1, n]} (23)

∪ {q0
?i′W

′→I

−−−−−→ q∗| i ∈ [1, n]} ∪ {q0
?$′W

′→I

−−−−−→ q∗}

∪ {q$
?i′W

′→I

−−−−−→ q∗ | i ∈ [1, n]}

∪ {qi
?kW→I

−−−−→ q∗| i, k ∈ [1, n]}

∪ {qi
?$W→I

−−−−→ q∗ | i ∈ [1, n]} (24)

∪ {q∗
?iW→I

−−−−→ q∗ | i ∈ [1, n]} ∪ {q∗
?i′W

′→I

−−−−−→ q∗ | i ∈ [1, n]}

∪ {q∗
?$W→I

−−−−→ q∗ } ∪ {q∗
?$′W

′→I

−−−−−→ q∗ } (25)
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∪ {q∗
?okL→I

−−−−−→ q∗ } (26)

∪ {q0
?$W→I

−−−−→ q$ } (27)

∪ {q$
?$′W

′→I

−−−−−→ q$′ }; (28)

� F = {(qWe , qW
′

e , qLok, q
I
$′)}.

Next, we give an informal explanation of previous de�nition. Please refer
to Figures ?? to ?? for a better understanding.

Automata AW and AW ′ start in state q0. They choose independently an
index to send to AI (transitions ?? and ??) and send letters of the corres-
ponding word to AL (transitions ?? and ??). For each letter of the word,
each automaton sends a message and changes its state, until it reaches state
qf (transitions ?? and ??). For example, in Figure ??, AW can choose the

third word, sends message 3W→I , goes in state q3,0, sends all letters of w3

and so it goes in state q3,1, q3,2, q3,3 and �nally qf . In the state qf , AW and
AW ′ can, either choose a new index (transitions ?? and ??) and send the
associated word, or send message $, resp. $′, to AI (transitions ?? and ??)
and message end, resp. end′, to AL (transitions ?? and ??), indicating the
end of the sequence.

Automata AL and AI start in state q0 from which they receive letters, or
respectively indices, from AW and AW ′ . For each letter, or index, from AW

that is in bu�er bWL, or bWI , the automaton reads it, goes to the correspon-
ding state (transitions ?? and ??) and reads the �rst letter, or index, from
AW ′ in bu�er bW ′L, or bW ′I . Either this letter, or index, corresponds to the
previous one and to the current state and the automaton goes back to state
q0 (transitions ?? and ??), or this letter, or index, does not match and the
automaton goes to state q∗ (transitions ?? and ??). We can see this state as
a sink state. Indeed automata go in this state from any state when a mes-
sage is received and does not correspond to the expected one (transitions ??
and ??). Once in q∗, both automata can receive any message (transitions ??
and ??) but they cannot leave q∗. For example, if AW sends word w3 and
then AW ′ sends w′

3, as we can see in Figure ?? and ??, AI receives 3W→I

goes in state q3, receives 3
W→I and returns in state q0. However, AL receives

aW→L, goes in state qa, and receives b′W
′→L that makes it go in state q∗.

When AL receive message end (transition ??), it waits for corresponding
message end′ from AW ′ . If it receives it, it goes to state qe′ (transition ??).
From this state, it can send message ok to AI which signi�es that all com-
parisons of letters have succeeded (transition ??).

When AI receives message $ (transition ??), it waits for corresponding
message $′ from AW ′ . If it receives it, all comparisons of indices have suc-
ceeded (transition ??) and it goes to state q$′ . In this state, it cannot receive
message ok from AL. However, if a comparison fails, AI goes to state q∗
where it can receive message ok (transition ??).
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In synchronous communication, automata AL and AI read messages in
the same order as they are received, whatever the sender. So, the only
behaviour allowing AI to be in q$′ and AL to be in qe′ involve that AW and
AW ′ send alternately indices to AI , and letters to AL respectively. However,
within synchronous communication, if AI and AL are in these state, message
ok can not be sent because it can not be received by AI in state q$′ , and so
the �nal global state can not be reached.

Example 4.1 (Encoding). We take PCP instance (W,W') of Example ??.
Encoding JW,W ′K1−1 is network N = ((Ap)p∈P ,M, F ) with P = (W,W ′, L, I).
Figures ??, ??, ?? and ?? represent these automata.

0

1, 0

2, 0

3, 0 3, 1 3, 2

3, 3

f $ e

!1W→I

!2W→I

!3W→I

!aW→L

!1W→I

!bW→L

!2W→I

!aW→L !bW→L !aW→L

!bW→L

!3W→I

!$W→I !endW→L

Figure 4.2: Automaton AW

0

1, 0 1, 1

2, 0

2, 1 2, 2

3, 0

f $ e

!1′W
′→I

!2′W
′→I

!3′W
′→I

!b′W
′→L

!a′W
′→L

!1′W
′→I

!b′W
′→L

!a′W
′→L !a′W

′→L

!2′W
′→I

!b′W
′→L

!3′W
′→I

!$′W→I !end′W→L

Figure 4.3: Automaton AW ′

20



0

a

b

∗

e e′ ok

?aW→L

?a′W
′→L

?bW→L

?b′W
′→L

?endW→L

?end′W
′→L !okL→I

?a′W
′→L

?b′W
′→L ?end′W

′→L

?aW→L ?a′W
′→L

?bW→L ?end′W
′→L

?endW→L

?aW→L

?bW→L ?b′W
′→L

?endW→L ?end′W
′→L

?a′W
′→L

?b′W
′→L

?aW→L ?a′W
′→L

?bW→L ?b′W
′→L

?endW→L ?end′W
′→L

Figure 4.4: Automaton AL

0

1

2

3

∗

$ $′

?1W→I

?1′W
′→I

?2W→I

?2′W
′→I

?3W→I

?3′W
′→I

?$W→I

?$′W
′→I

?1′W
′→I ?3′W

′→I

?2′W
′→I ?$′W

′→I

?1W→I ?1′W
′→I

?2W→I ?2′W
′→I

?3W→I ?$′W
′→I

?$W→I

?1W→I

?2W→I ?1′W
′→I

?3W→I ?3′W
′→I

?$W→I ?$′W
′→I

?1W→I ?2′W
′→I

?2W→I ?3′W
′→I

?3W→I ?$′W
′→I

?$W→I
?1′W

′→I

?2′W
′→I

?3′W
′→I

?1W→I ?1′W
′→I

?2W→I ?2′W
′→I

?3W→I ?3′W
′→I

?$W→I ?$′W
′→I

Figure 4.5: Automaton AI
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4.2 Undecidability of Synchronizability Problem for peer-to-

peer systems

We will prove that the asynchronous system, based on the encoding of a
PCP instance (W,W'), is synchronizable if and only if the instance has a
solution. Proofs of the results in this section can be found in Appendix ??.

Indeed, the language associated to the synchronous system, based on the
encoding of this instance, is empty. The system can not reach its global
�nal state because of message ok which can not be sent since it can not be
received.

Lemma 1. Let (W,W') a PCP instance and JW,W ′Kp2p = N its encoding
into communicating automata, then L(N0) = ∅.

The language with a peer-to-peer communication is not empty if and only
if the instance has a solution. If the language contains a �nal send trace,
then the global �nal state was reached and it is possible only if comparisons
of AI and AL succeed. In the same way, if a �nal send trace exists, then we
can construct a solution of the instance from this.

Lemma 2. For all PCP instance (W,W') with JW,W ′Kp2p = N , (W,W')
has a solution if and only if L(N1−1∞) ̸= ∅.

Finally, the encoding of a PCP instance is synchronizable if and only if
this instance does not have a solution. Indeed, the synchronous language is
always empty, and the asynchronous language contains a �nal send traces
only if it exists a solution.

Lemma 3. For all instance (W,W') of PCP where JW,W ′Kp2p = N , (W,W')
has a solution if and only if L(N0) ̸= L(N1−1∞).

From these lemmas, we can establish the undecidability of the synchro-
nizability for peer-to-peer systems.

Theorem 1. The Synchronizability Problem is undecidable for peer-to-peer
systems.

Remark 5. If we de�ne all states of the network as �nal global state (which
is equivalent to not having the notion of �nal global state), the Synchroniza-
bility Problem is still undecidable. Our encoding needs few modi�cations to
establish the result.

Indeed, only AI needs to be modi�ed. The idea is to check the state of
AL (what we are already doing with message ok) but also the state of I. We
want AL is in state qend′ and AI is in state q$′ , which means comparisons
of letters and indices succeeded. To verify that, AL send message ok from
state qend′ to AI . AI can receive it in q∗ but also in q$′ (see Figure ??, which
corresponds to Figure ?? where only added transitions are wrote). If it is
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0

1

2

3

∗

$ $′ ok ok'
?okL→I !ok′I→L

?okL→I

Figure 4.6: Automaton AI without �nal state

in qI$′ and it receives ok, it can send ok′ to AL which is not able to read it.
Indeed, there is no transitions with this label. Thus, this message can be sent
only within asynchronous communication when comparisons of indices and
letters succeeded, so when there exists a solution to the PCP instance.

5 Synchronizability Problem for Mailbox Systems

Counter-examples of Section ?? put us on the path of the undecidability of
the synchronizability for mailbox systems. Thus, in this section, we show
the undecidability of synchronizability for systems with this type of commu-
nication. As in the previous section, the proof is a reduction from PCP. We
denote N = JW,W ′Kmail the encoding of an instance (W,W ′). We prove
that a solution to this instance exists if and only if

L(N0) ̸= L(N∗−1∞)

5.1 Mailbox Encoding of Post Correspondence Problem

The encoding in mailbox system is di�erent from the one with peer-to-peer
communication. Indeed, the fact that a same bu�er can receive messages
from di�erent senders poses a number of constraints. AW and AW ′ have to
coordinate and alternate their sendings so that AI and AL do not receive
two consecutive messages from the same automaton.

As a counter-example, we consider instance (W,W') of PCP of Exam-
ple ?? to show why the previous encoding does not allow to reduce the PCP
to the Synchronizability Problem for mailbox systems. As said before, AW

and AW ′ have to be regulated. We will write send trace ts respecting this
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constraint and allowing to reach the �nal global state. We know that a
solution of this instance is Sol = (2, 1, 3).

ts = !2W→I · !2′W ′→I · !bW→L · !b′W ′→L ·

(AW is in state qf so to send a new letter to AL, it has to send a new index
to AI .)

!1W→I · !aW→L · !a′W ′→L ·

(Again, AW is in state qf so to send a new letter to AL, it has to send a new
index to AI .)

!3W→I · !aW→L · !a′W ′→L

At this state, bu�er bL of AL contains: bL = bb′aa′aa′; but bu�er bI of
AI contains: bI = 22′13 . So, comparisons of AI will fail. Indeed, the
di�erence of length of words makes that two indices of AW have been sent
consecutively.

This system can not reach its �nal global state, so L(N∗−1∞) = ∅, how-
ever a solution exists to this instance. Thus, this encoding does not allow to
reduce the PCP to the Synchronizability Problem for mailbox systems.

We have to de�ne a new encoding to mailbox system. The encoding of
an instance (W,W') of PCP is a parallel composition of four automata : BI ,
BW , BW ′ , and BL. In this encoding, BI sends the same indices to BW and
BW ′ which sends the respective words to BL. BL compare letters and, at the
end of the run, its state allows to say if a solution exists. The topology and
the bu�er layout of the system is depicted in Figure ??.

BI

BW

BW ′

BL

Figure 5.1: Topology of N

More formally, we de�ne the encoding as follows.

De�nition 15 (Encoding of PCP in mailbox system). Let (W,W') be a PCP
instance over Σ, where W = w1, . . . , wn and W ′ = w′

1, . . . , w
′
n. The encoding

of (W,W') is JW,W ′Kmail = ((Ap)p∈P ,M, F ) where:
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� P = {I,W,W ′, L};
� The set of messages is

M = {iI→W | i ∈ [1, n]} ∪ {i′I→W ′ | i ∈ [1, n]} ∪ {$I→W } ∪ {$′I→W ′}∪

{αW→L | α ∈ Σ} ∪ {α′W ′→L | α ∈ Σ}∪

{endW→L} ∪ {end′W ′→L} ∪ {eL→I};

� BI = (SI , s
I
0,M,−→I) where:

SI = {q0, q$, q$′} ∪ {qi | i ∈ [1, n]}
sI0 = q0

−→I= {q0
!iI→W

−−−−→qi | i ∈ [1, n]} (29)

∪ {qi
!i′I→W ′

−−−−−→q0 | i ∈ [1, n]} (30)

∪ {q0
!$I→W

−−−−→q$} (31)

∪ {q$
!$′I→W ′

−−−−−→q$′}; (32)

� BW = (SW , sW0 ,M,−→W ) where:

SW = {q0, qf , q$, qe} ∪ {qi,j | i ∈ [1, n], j ∈ [0, |wi| − 1]}
sW0 = q0

−→W= {q0
?iI→W

−−−−→ qi,0 | i ∈ [1, n]} (33)

∪ {qi,j
!αW→L

−−−−→ qi,j+1 |
α = wi,j+1, i ∈ [1, n], j ∈ [1, |wi| − 2]} (34)

∪ {qi,|wi|−1
!αW→L

−−−−→ qf | α = wi,|wi|, i ∈ [1, n]} (35)

∪ {qf
?iI→W

−−−−→ qi,0 | i ∈ [1, n]} (36)

∪ {qf
?$I→W

−−−−→ q$} (37)

∪ {q$
!endW→L

−−−−−−→ qe}; (38)

� BW ′ = (SW ′ , sW
′

0 ,M,−→W ′) where:

SW ′ = {q0, qf , q$, qe} ∪ {qi,j | i ∈ [1, n], j ∈ [0, |wi| − 1]}
sW

′
0 = q0

−→W ′= {q0
?i′I→W ′

−−−−−→ qi,0 | i ∈ [1, n]} (39)

∪ {qi,j
!α′W ′→L

−−−−−→ qi,j+1 |
α = w′

i,j+1, i ∈ [1, n], j ∈ [1, |w′
i| − 2]} (40)
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∪ {qi,|w′
i|−1

!α′W ′→L

−−−−−→ qf | α = w′
i,|w′

i|
, i ∈ [1, n]} (41)

∪ {qf
?i′I→W ′

−−−−−→ qi,0 | i ∈ [1, n]} (42)

∪ {qf
?$′I→W ′

−−−−−→ q$} (43)

∪ {q$
!end′W

′→L

−−−−−−−→ qe}; (44)

� BL = (SL, s
L
0 ,M,−→L) where:

SL = {q0, qe, qe′ , qok, q∗} ∪ {qα|α ∈ Σ}
sL0 = q0

→L= {q0
?αW→L

−−−−−→ qα | α ∈ Σ} (45)

∪ {qα
?α′W ′→L

−−−−−−→ q0 | α ∈ Σ} (46)

∪ {qα
?β′W ′→L

−−−−−−→ q∗ | β ∈ Σ, β ̸= α}

∪ {qα
?end′W

′→L

−−−−−−−→ q∗} (47)

∪ {q0
?α′W ′→L

−−−−−−→ q∗} ∪ {q0
?end′W

′→L

−−−−−−−→ q∗}

∪ {qα
?βW→L

−−−−−→ q∗ | β ∈ Σ} ∪ {qα
?endW→L

−−−−−−→ q∗ }

∪ {qe
?αW→L

−−−−−→ q∗ | α ∈ Σ}

∪ {qe
?α′W ′→L

−−−−−−→ q∗ | α ∈ Σ} (48)

∪ {q∗
?αW→L

−−−−−→ q∗ | α ∈ Σ} ∪ {q∗
?α′W ′→L

−−−−−−→ q∗ | α ∈ Σ}

∪ {q∗
?endW→L

−−−−−−→ q∗ } ∪ {q∗
?end′W

′→L

−−−−−−−→ q∗ } (49)

∪ {q0
?endW→L

−−−−−−→ qe } (50)

∪ {qe
?end′W

′→I

−−−−−−−→ qe′ } (51)

∪ {qe′
!okL→I

−−−−→ qok}; (52)

� F = {(qI$′ , q
W
e , qW

′
e , qLok)}.

Next, we give an informal explanation of previous de�nition. Please refer
to Figures ?? to ?? for a better understanding.

Automaton BI chooses an index, sends it to BW (transitions ??) and
goes to the corresponding state. Then it sends the same index to BW ′ and
returns in its initial state (transitions ??). To �nish the sequence of indices,
it send messages $ (transition ??) and $′ (transition ??). For example, in
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Figure ??, it can send message 2I→W and goes to state q2. Then, it sends
message 2′I→W ′

and returns in state q0. When the sequence of indices is
�nished, it sends $I→W , goes in state q$, sends $

′I→W ′
and goes in state q$′ .

Automaton BW , and respectively BW ′ , receives an index from BI (tran-
sitions ?? and ??) and send the letters of the corresponding word to BL
(transitions ?? and ??). Note that the send trace allowing to reach the
global �nal state alternate a letter of BW with a letter of BW ′ . At the end of
each word, the automaton is in state qf (transitions ?? and ??) in which it
can either receive a new index (transitions ?? and ??), or receive message $,
respectively $′ (transitions ?? and ??). If it receives $, it sends message end,
respectively end′, to BL (transitions ?? and ??). For example, if BI begins
by sending index 2, as we can see in Figure ?? and ??, BW and BW ′ go in
state q2,0. BW sends bW→L and goes to qf , then BW ′ sends b′W

′→L and goes

to state q2,1. It has to wait the next letter of BW before sending a′W
′→L and

going in state q2,2, or BL would receive two letters from BW ′ consecutively
and go in state q∗.

Indeed, automaton BL receives a letter from BW and goes to the cor-
responding state (transitions ??). If it receives the same letter from BW ′ ,
then it goes back to state q0 (transitions ??), otherwise it goes to state q∗
(transitions ??) which, as in previous encoding, can be seen as a sink state
(transitions ?? and ??). For example, as we can see in Figure ??, Figure ??
and Figure ??, if BW and BW ′ received index 2, BW sends bW→L, BL receives
it and goes in state qb. Then, BW ′ sends b′W

′→L and BL returns in q0. As
we said previously, if BW ′ sends a′W

′→L immediately, BL goes in state q∗.
If all comparisons of letters of BW and BW ′ succeed until messages end

(transition ??) and end′ (transition ??), BL is in state qe′ . If the system
is asynchronous, then BL can send message ok, otherwise if the system is
synchronous, then BL can send message ok only if BI is in state q∗ from
which it can receive ok (transition ??).

Example 5.1 (Encoding). We take instance (W,W') of PCP of Example ??.
Encoding JW,W ′K1−1 is network N = ((Bp)p∈P ,M, F ) with
P = (I,W,W ′, L). Figures ??, ??, ?? and ?? represent these automata.
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2

3

$ $′

!1I→W

!1′I→W

!2I→W!2′I→W ′

!3I→W

!3′I→W ′

!$I→W !$′I→W

Figure 5.2: Automaton BI
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2, 0

3, 0 3, 1 3, 2

3, 3

f $ e

?1I→W

?2I→W

?3I→W

!aW→L

?1I→W

!bW→L

?2I→W

!aW→L !bW→L !aW→L

!bW→L

?3I→W

?$W→I !endW→L

Figure 5.3: Automaton BW

0

1, 0 1, 1

2, 0

2, 1 2, 2

3, 0

f $ e

?1′I→W ′

?2′I→W ′

?3′I→W ′

!b′W
′→L

!a′W
′→L

?1′I→W ′

!b′W
′→L

!a′W
′→L !a′W

′→L

?2′I→W ′

!b′W
′→L

?3′I→W ′

?$′W→I !end′W→L

Figure 5.4: Automaton BW ′
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a

b

∗

e e′ ok

?aW→L

?a′W
′→L

?bW→L

?b′W
′→L

?endW→L

?end′W
′→L !okL→I

?a′W
′→L

?b′W
′→L ?end′W

′→L

?aW→L ?a′W
′→L

?bW→L ?end′W
′→L

?endW→L

?aW→L

?bW→L ?b′W
′→L

?endW→L ?end′W
′→L

?a′W
′→L

?b′W
′→L

?aW→L ?a′W
′→L

?bW→L ?b′W
′→L

?endW→L ?end′W
′→L

Figure 5.5: Automaton BL

5.2 Undecidability of Synchronizability Problem for mailbox

systems

We will prove that the asynchronous system, based on the encoding of a
PCP instance (W,W'), is synchronizable if and only if the instance has a
solution. Proofs of the results in this section can be found in Appendix ??.

Indeed, the language associated to the synchronous system, based on the
encoding of this instance, is empty. The system can not reach its global
�nal state because of message ok which can not be sent since it can not be
received.

Lemma 4. Let (W,W') an instance of PCP and JW,W ′Kmail = N its en-
coding into communicating automata, then L(N0) = ∅.

Within asynchronous communication, this message ok can be send only
if the encoded instance of PCP has a solution. So the global �nal state can
be reached, and the language is not empty, only if it exists a solution.

Lemma 5. For all instance (W,W') of PCP where JW,W ′Kmail = N ,
(W,W') has a solution if and only if L(N∗−1∞) ̸= ∅.

Therefore, the system is synchronizable if and only if the encoded instance
does not have solution.

Lemma 6. For all instance (W,W') of PCP where JW,W ′Kmail = N ,
(W,W') has a solution if and only if L(N0) ̸= L(N∗−1∞).

Thus, from these lemmas, we can establish the undecidability of synchro-
nizability for mailbox systems.
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Theorem 2. The Synchronizability Problem is undecidable for mailbox sys-
tems.

Remark 6. In mailbox communication, we can not work without the notion
of global �nal state, as in peer-to-peer communication. Synchronizability
without global �nal states for mailbox systems remains an open problem.

6 Related Works

Several authors have looked at the notion of synchronizability or other no-
tions related to it.

In [?], Basu and Bultan de�ned synchronizability over language based
on send traces only, which amounts with our de�nitions to all states being
�nal. In this paper, the authors establish a hierarchy of synchronizability
and they claim that, for all networks N :

Ntype∞ is synchronizable if and only ifL(N0) = L(Ntype∞)

for type ∈ {1− 1; ∗ − 1}. They also study other types of asynchrony, shared
memory systems and bag systems where there is a unique FIFO bu�er and
respectively a unique bu�er which is not a FIFO, to store all messages.

However, in [?], Finkel and Lozes prove this �rst assertion is false, with
counter-examples for systems with both peer-to-peer (1 - 1) and mailbox
(* - 1) communication (see Figure ?? for mailbox systems). Furthermore,
they prove that the Synchronizability Problem is undecidable for peer-to-
peer systems.

Other works, even if they di�er by the type of trace that is observed and
by the modelling of systems, are close to ours. Genest et al. in [?] studied
deadlock-free distributed systems, with a peer-to-peer communication. Here,
they are not interested in send traces but in Mazurkiewicz traces (see [?] for
more details). Intuitively, these traces keep both sendings and receptions but
allow permutations between some actions. In order to model communica-
tions, they use Message Sequences Charts (MSC). They also use the notions
of �nal state to study systems. More precisely, they seek to know if these
systems are universally or existentially bounded, and specify when this is
decidable. A system is universally bounded if it exists a bound B such that,
regardless of the schedule of the actions, every run can be executed with a
maximum of B transitory messages in the system, and existentially bounded
if every runs can be rescheduled (according to the de�nition of Mazurkiewicz
trace) such that they can be executed with a maximum of B transitory mes-
sages in the system. This last property is close to the notion of stability,
indeed if a system is existentially bounded, it means that all traces can be
executed respecting a bound for the bu�ers.

In [?], Bouajjani et al. studied Mazurkiewicz traces on mailbox systems
and model them with MSC. The observed property is the k-synchronizability,
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which is close to the notion of stability. They establish properties on con�ict
graphs characterizing k-synchronizable traces and also study the decidability
of the k-synchronizability.

7 Conclusion

During my internship, we focussed on the property of synchronizability. In a
synchronizable system, the behaviour is independent from the type of com-
munication. This entails that a synchronizable system can be analysed with
tools for synchronous systems that are, in general, more powerful and e�-
cient (e.g., properties for synchronous systems are in general decidable).

More precisely, we looked at the decidability of the synchronizability
problem, �rst for peer-to-peer systems, and then for mailbox systems. For
the former, we proved the undecidability of synchronizability with an alter-
native proof than the one presented in [?]. For the latter, we showed the
undecidability of synchronizability with the additional constraint that not
all states are �nal.

Deciding synchronizability for mailbox systems in the general case re-
mains an open problem, that will be the focus of my �rst phd year. More
broadly, other questions would need to be addressed. It would be interesting
to know if classes of systems for which the problem is decidable exist, and so
to �nd conditions that would imply the synchronizability of the system by
construction. Finally, we might also ask what properties could be induced
by the synchronizability of a system, like for instance deadlock freedom.
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Appendix A Proofs of Section ??

Lemma 1. Let (W,W') a PCP instance and JW,W ′Kp2p = N its encoding
into communicating automata, then L(N0) = ∅.

Proof. By contradiction, we suppose L(N0) ̸= ∅. Thus let tf a �nal send
trace such that tf ∈ L(N0). As (q

W
e , qW

′
e , qLok, q

I
$′) is the unique �nal global

state and by de�nition of �nal send trace, we have: tf = act1 ·act2 · . . . ·acte
such that

((qW0 , qW
′

0 , qL0 , q
I
0), B

∅)
act1=⇒
0

C1
act2=⇒
0

. . .
acte=⇒
0

((qWe , qW
′

e , qLok, q
I
$′), B

∅)

By construction, there is a unique transition in AL to reach state qLok:

qLe′
!okL→I

−−−−→L qLok so ∃actk ∈ tf such that actk = !okL→I . The communication
being synchronous, a sending must occur together with its reception (see
rule (0 SEND)). By construction, there is a unique transition in AI for the

reception of message ok: qI∗
?okL→I

−−−−−→I qI∗ . However, there is no transition
from qI∗ to qI$′ . So, after the sending of message ok, the global �nal state is

not reachable. Thus, tf can not exist and L(N0) = ∅.

Lemma 2. For all PCP instance (W,W') with JW,W ′Kp2p = N , (W,W')
has a solution if and only if L(N1−1∞) ̸= ∅.

Proof. ⇒
Let Sol(W,W') = (i1, i2, . . . , im) be a solution of (W,W'). For each index

k ∈ Sol(W,W'), corresponding words in W and W' are
wk = wk,1wk,2 . . . wk,|wk| and w′

k = w′
k,1w

′
k,2 . . . w

′
k,|w′

k|
respectively.

Take a send trace ts of the following form:

ts = !iW→I
1 · !wW→L

i1,1 · !wW→L
i1,2 · . . . · !wW→L

i1,|wi1
| ·

!iW→I
2 · !wW→L

i2,1 · !!wW→L
i2,2 · . . . · !wW→L

i2,|wi2
| ·

. . .

!iW→I
m · !wW→L

im,1 · !wW→L
im,2 · . . . · !wW→L

im,|wim | · !$
W→I · !endW→L ·

!i′W
′→I

1 · !w′W ′→L
i1,1 · !w′W ′→L

i1,2 · . . . · !w′W ′→L
i1,|w′

i1
| ·

!i′W
′→I

2 · !w′W ′→L
i2,1 · !w′W ′→L

i2,2 · . . . · !w′W ′→L
i2,|w′

i2
| ·

. . .

!i′W
′→I

m · !w′W ′→L
im,1 · !w′W ′→L

im,2 · . . . · !w′W ′→L
im,|w′

im
| · !$

′W ′→I · !end′W ′→L ·

!okL→I

We show that ts ∈ L(N1−1∞). Trace ts corresponds to the following run.
First, AW sends indices included in [i1, im] and corresponding words in W .
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((qW0 , qW
′

0 , qL0 , q
I
0), B

∅)
!iW→I
1−−−−→

1−1∞
((qWi1,0, q

W ′
0 , qL0 , q

I
0), B1 = B∅{bWI/bWI · i1})

!wW→L
i1,1−−−−−→

1−1∞
((qWi1,1, q

W ′
0 , qL0 , q

I
0), B1′ = B1{bWL/bWL · wi1,1})

!wW→L
i1,2−−−−−→

1−1∞
((qWi1,2, q

W ′
0 , qL0 , q

I
0), B1′{bWL/bWL · wi1,2})

. . .

((qWi1,|wi1
|−2, q

W ′
0 , qL0 , q

I
0), B2)

!wW→L
i1,|wi1

|−1

−−−−−−−→
1−1∞

((qWi1,|wi1
|−1, q

W ′
0 , qL0 , q

I
0), B2′ = B2{bWL/bWL · wi1,|wi1

|−1})

!wW→L
i1,|wi1

|
−−−−−−→

1−1∞
((qWf , qW

′
0 , qL0 , q

I
0), B2′{bWL/bWL · wi1,|wi1

|})

. . .

((qWf , qW
′

0 , qL0 , q
I
0), B3)

!iW→I
m−−−−→

1−1∞
((qWim,0, q

W ′
0 , qL0 , q

I
0), B3′ = B3{bWI/bWI · im, 1})

!wW→L
im,1−−−−−→

1−1∞
((qWim,1, q

W ′
0 , qL0 , q

I
0), B3′′ = B3′{bWL/bWL · wim,1})

!wW→L
im,2−−−−−→

1−1∞
((qWim,2, q

W ′
0 , qL0 , q

I
0), B3′′{bWL/bWL · wim,2})

. . .

((qWim,|wim |−2, q
W ′
0 , qL0 , q

I
0), B4)

!wW→L
im,|wim |−1

−−−−−−−−→
1−1∞

((qWim,|wim |−1, q
W ′
0 , qL0 , q

I
0), B4′ = B4{bWL/bWL · wim,|wim |−1})

!wW→L
im,|wim |

−−−−−−−→
1−1∞

((qWf , qW
′

0 , qL0 , q
I
0), B4′′ = B4′{bWL/bWL · wim,|wim |})

Next, it sends messages $ and end indicating to AI and AL the end of
messages of AW .

!$W→I

−−−−→
1−1∞

((qW$ , qW
′

0 , qL0 , q
I
0), B5 = B4′′{bWI/bWI · $})

!endW→L

−−−−−−→
1−1∞

((qWe , qW
′

0 , qL0 , q
I
0), B6 = B5{bWL/bWL · end})
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At this state, bu�ers bWI and bWL are �lled with indices and letters of
words in W respectively. Next it is the turn of AW ′ .

!i′W
′→I

1−−−−−→
1−1∞

((qWe , qW
′

i1,0, q
L
0 , q

I
0), B6′ = B6{bW ′I/bW ′I · i′1})

!w′W ′→L
i1,1−−−−−→
1−1∞

((qWe , qW
′

i1,1, q
L
0 , q

I
0), B6′′ = B6′{bW ′L/bW ′L · w′

i1,1})

!w′W ′→L
i1,2−−−−−→
1−1∞

((qWe , qW
′

i1,2, q
L
0 , q

I
0), B6′′{bW ′L/bW ′L · w′

i1,2})

. . .

((qWe , qW
′

i1,|w′
i1
|−2, q

L
0 , q

I
0), B7)

!w′W ′→L
i1,|w′

i1
|−1

−−−−−−−→
1−1∞

((qWe , qW
′

i1,|w′
i1
|−1, q

L
0 , q

I
0), B7′ = B7{bW ′L/bW ′L · w′

i1,|w′
i1
|−1})

!w′W ′→L
i1,|w′

i1
|

−−−−−−→
1−1∞

((qWe , qW
′

f , qL0 , q
I
0), B7′{bW ′L/bW ′L · w′

i1,|w′
i1
|})

. . .

((qWe , qW
′

f , qL0 , q
I
0), B8)

!i′W
′→I

m−−−−−→
1−1∞

((qWe , qW
′

im,0, q
L
0 , q

I
0), B8′ = B8{bW ′I/bW ′I · i′m})

!w′W ′→L
im,1−−−−−→
1−1∞

((qWe , qW
′

im,1, q
L
0 , q

I
0), B8′′ = B8′{bW ′L/bW ′L · w′

im,1})

!w′W ′→L
im,2−−−−−→
1−1∞

((qWe , qW
′

im,2, q
L
0 , q

I
0), B8′′{bW ′L/bW ′L · w′

im,2})

. . .

((qWe , qW
′

im,|w′
im

|−2, q
L
0 , q

I
0), B9)

!w′W ′→L
im,|w′

im
|−1

−−−−−−−−→
1−1∞

((qWe , qW
′

im,|w′
im

|−1, q
L
0 , q

I
0), B9′ = B9{bW ′L/bW ′L · w′

im,|w′
im

|−1})

!w′W ′→L
im,|w′

im
|

−−−−−−−→
1−1∞

((qWe , qW
′

f , qL0 , q
I
0), B9′′ = B9′{bW ′L/bW ′L · w′

im,|w′
im

|})

!$′W
′→I

−−−−−→
1−1∞

((qWe , qW
′

$ , qL0 , q
I
0), B10 = B9′′{bW ′I/bW ′I · $′})

!end′W
′→L

−−−−−−−→
1−1∞

((qWe , qW
′

e , qL0 , q
I
0), B11 = B10{bW ′L/bW ′L · end′})
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At this state, bu�ers bW ′I and bW ′L are �lled with indices and letters of
words in W', respectively. Now the network proceeds by comparing indices.

((qWe , qW
′

e , qL0 , q
I
0), B11)

?iW→I
1−−−−→

1−1∞
((qWe , qW

′
e , qL0 , q

I
i1), B11′ = B11{bWI = i1 · b′WI/b

′
WI})

?i′W
′→I

1−−−−−→
1−1∞

((qWe , qW
′

e , qL0 , q
I
0), B11′′ = B11′{bW ′I = i′1 · b′W ′I/b

′
W ′I})

?iW→I
2−−−−→

1−1∞
((qWe , qW

′
e , qL0 , q

I
i2), B11′′′ = B11′′{bWI = i2 · b′WI/b

′
WI})

?i′W
′→I

2−−−−−→
1−1∞

((qWe , qW
′

e , qL0 , q
I
0), B11′′′′ = B11′′′{bW ′I = i′2 · b′W ′I/b

′
W ′I})

. . .

((qWe , qW
′

e , qL0 , q
I
0), B12)

?iW→I
m−−−−→

1−1∞
((qWe , qW

′
e , qL0 , q

I
im), B12′ = b12{bWI = im · b′WI/b

′
WI})

?i′W
′→I

m−−−−−→
1−1∞

((qWe , qW
′

e , qL0 , q
I
0), B12′′ = B12′{bWI = i′m · b′W ′I/b

′
W ′I})

?$W→I

−−−−→
1−1∞

((qWe , qW
′

e , qL0 , q
I
$), B12′′′ = B12′′{bWI = $/∅})

?$′W
′→I

−−−−−→
1−1∞

((qWe , qW
′

e , qL0 , q
I
$′), B13 = B12′′′{bW ′I = $′/∅})

At this state, bu�ers bWI and bW ′I are empty and comparison of indices
by AI has succeeded, as witnessed by state qI$′ . If this was not the case, the

automaton would be in state qI∗ . The same task is carried on letters:

((qWe , qW
′

e , qL0 , q
I
$′), B13)

?wW→L
i1,1−−−−−→

1−1∞
((qWe , qW

′
e , qLwi1,1

, qI$′), B13′ = B13{bWL = wi1,1 · b′WL/b
′
WL})

?w′W ′→L
i1,1−−−−−−→
1−1∞

((qWe , qW
′

e , qL0 , q
I
$′), B14 = B13′{bWL = w′

i1,1.b
′
W ′L/b

′
W ′L})

. . .

((qWe , qW
′

e , qL0 , q
I
$′), B14)

?wW→L
im,|wim |

−−−−−−−→
1−1∞

((qWe , qW
′

e , qLwim,|wim |
, qI$′), B14′ = B14{bWL = wim,|wim | · b′WL/b

′
WL})

?w′W ′→L
im,|w′

im
|

−−−−−−−→
1−1∞

((qWe , qW
′

e , qL0 , q
I
$′), B14′′ = B14′{bWL = w′

im,|w′
im

|.b
′
W ′L/b

′
W ′L})
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?endW→L

−−−−−−→
1−1∞

((qWe , qW
′

e , qLe , q
I
$′), B15 = B14{bWL = end/∅})

?end′W
′→L

−−−−−−−→
1−1∞

((qWe , qW
′

e , qLe′ , q
I
$′), B16 = B15{bW ′L = end′/∅})

At this state, bu�ers bWL and bW ′L are empty and comparison of letters
by AL has succeeded, as witnessed by its state qLe′ . If this was not the case,
the automaton would be in state qL∗ . Finally:

((qWe , qW
′

e , qLe , q
I
$′), B16)

!okL→I

−−−−→
1−1∞

((qWe , qW
′

e , qLok, q
I
$′), B16{bLI/bLI · ok})

Global state (qWe , qW
′

e , qLok, q
I
$′) reached with this run is the �nal global state

of the network and t ∈ L(N1−1∞). Thus L(N1−1∞) ̸= ∅, concluding this side
of the proof.

⇐
If L(N1−1∞) ̸= ∅ then ∃ t ∈ L(N1−1∞). As (qWe , qW

′
e , qLok, q

I
$′) is the

unique �nal global state and by de�nition of language, t is a �nal send trace
and we have: t = act1act2 . . . acte such that

((qW0 , qW
′

0 , qL0 , q
I
0), B

∅)
act1=⇒
0

C1
act2=⇒
0

. . .
acte=⇒
0

((qWe , qW
′

e , qLok, q
I
$′), Be)

Notice that in order to reach qWe and qW
′

e ,

� ∃ acti, acti′ ∈ t, i, i′ ∈ [1, e], where acti =!jW→I and acti′ =!j′W
′→I ,

j, j′ ∈ [1, n] and j = j′, i.e., AW and AW ′ have sent at least one index,
with the same index (and the associated word),

� ∃ actf , actf ′ , actg, actg′ ∈ t, f, f ′, g, g′ ∈ [1, e], i < f < g, i′ < f ′ < g′,
where actf =!$W→I , actf ′ =!$′W

′→I , actg =!endW→L, actg′ = !end′W
′→L.

Moreover, to reach qI$ , we have that:

� ∃k ∈ N+ such that t contains mW→I
1 , mW→I

2 , . . . , mW→I
k in this order

and mW ′→I
1′ , mW ′→I

2′ , . . . , mW ′→I
k′ in this order,

� ∀i, i′ ∈ [1, k], mW→I
i = jW→I and mW ′→I

i′ = j′W
′→I , with j ∈ [1, n],

i.e., the sequences of indices sent by AW and AW ′ to AI must be equal.

Finally, to reach qLok, we deduce that:

� ∃l ∈ N+ such that t contains mW→L
1 , mW→L

2 , . . . , mW→L
l in this order

and m′W ′→L
1 , m′W ′→L

2 , . . . , m′W ′→L
l in this order,

� ∀i ∈ [1, l], mW→I
i = αW→I and m′W ′→L

i = α′W ′→L, with α ∈ Σ, i.e.,
the sequences of letters sent by AW and AW ′ to AL must be equal.

36



� ∃actz ∈ t such that actz = okL→I and AL can reach qLok.

Then, if the network is in a �nal global state, indices and letters sent by
AW and AW ′ are equal. So trace t contains a solution of instance (W,W')
that can be found by extracting the messages sent by AW to AI :

Sol(W,W') = (mW→I
1 ,mW→I

2 , . . . ,mW→I
k )

Lemma 3. For all instance (W,W') of PCP where JW,W ′Kp2p = N , (W,W')
has a solution if and only if L(N0) ̸= L(N1−1∞).

Proof. Let (W,W') be an instance of PCP.
⇒

By Lemma ??, if (W,W') has a solution, then L(N1−1∞) ̸= ∅. By
Lemma ??, we know L(N0) = ∅. Thus, if (W,W') has a solution, then
L(N0) ̸= L(N1−1∞).
⇐

By Lemma ??, L(N0) = ∅. If L(N0) ̸= L(N1−1∞) then L(N1−1∞) ̸= ∅.
So, by Lemma ??, (W,W') has a solution.

Theorem 1. The Synchronizability Problem is undecidable for peer-to-peer
systems.

Proof. According to Lemma ??, an instance of PCP has a solution if and only
if the language of the peer-to-peer encoding of this instance is not synchro-
nizable. The encoding of the Post Correspondence Problem is a reduction
to the Synchronizability Problem for peer-to-peer systems. The Post Cor-
respondence Problem is an undecidable problem, then the Synchronizability
Problem for peer-to-peer systems is undecidable.

Appendix B Proofs of Section ??

Lemma 4. Let (W,W') an instance of PCP and JW,W ′Kmail = N its en-
coding into communicating automata, then L(N0) = ∅.

Proof. By contradiction, we suppose L(N0) ̸= ∅. Thus let t a �nal send
trace such that t ∈ L(N0). As (qWe , qW

′
e , qLok, q

I
$′) is the unique �nal global

state and by de�nition of �nal send trace, we have: t = act1act2 . . . acte
such that

((qW0 , qW
′

0 , qL0 , q
I
0), B

∅)
act1=⇒
0

C1
act2=⇒
0

. . .
acte=⇒
0

((qWe , qW
′

e , qLok, q
I
$′), B

∅)

By construction, there is a unique transition in BL to reach state qLok:

qLe′
!okL→I

−−−−→L qLok, so ∃actk ∈ t such that actk = !okL→I . The communication
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being synchronous, a sending must occur together with its reception (see
rule (Sync. SEND)). By construction, there is no transition in BI for the
reception of message ok. So, it can not be send and BL can not reach qLok.
Thus t does not exist and L(N0) = ∅.

Lemma 5. For all instance (W,W') of PCP where JW,W ′Kmail = N ,
(W,W') has a solution if and only if L(N∗−1∞) ̸= ∅.

Proof. ⇒
Let Sol(W,W') = (i1, i2, . . . , im) be a solution of (W,W'). For each index k ∈
Sol(W,W'), corresponding words in W and W' are wk = wk,1wk,2 . . . wk,|wk|
and w′

k = w′
k,1w

′
k,2 . . . w′

k,|w′
k|
respectively.

Take a send trace ts of the following form:

ts = !iI→W
1 · !i′I→W ′

1 · !iI→W
2 · !i′I→W ′

2 · . . . ·

!iI→W
m · !i′I→W ′

m · !$I→W · !$′I→W ′ ·

!xW→L
1 · !x′W ′→L

1 · !xW→L
2 · !x′W ′→L

2 · . . . ·

!xW→L
y · !x′W ′→L

y · !endW→L · !end′W ′→L · !okL→I

with

tw = (xW→L
1 , xW→L

2 , . . . , xW→L
y , endW→L)

= (wW→L
i1,1 , wW→L

i1,2 , . . . , wW→L
i1,|wi1

|, w
W→L
i2,1 , wW→L

i2,2 , . . . , wW→L
i2,|wi2|,

. . .

wW→L
im,1 , wW→L

im,2 , . . . , wW→L
im,|wim|)

and

tw
′
= (x′W

′→L
1 , x′W

′→L
2 , . . . , x′W

′→L
y , end′W

′→L)

= (w′W ′→L
i1,1 , w′W ′→L

i1,2 , . . . , w′W ′→L
i1,|wi1

|′ , w
′W ′→L
i2,1 , w′W ′→L

i2,2 , . . . , w′W ′→L
i2,|wi2′|,

. . .

w′W ′→L
im,1 , w′W ′→L

im,2 , . . . , w′W ′→L
im,|wim′|)

We show that t ∈ L(N∗−1∞). Trace t corresponds to the following run:
First, BI sends indices to BW and BW ′ .

((qI0 , q
W
0 , qW

′
0 , qL0 ), B

∅)
!iI→W
1−−−−→

∗−1∞
((qIi1 , q

W
0 , qW

′
0 , qL0 ), B1 = B∅{bW /bW .i1})

!i′I→W ′
1−−−−−→
∗−1∞

((qI0 , q
W
0 , qW

′
0 , qL0 ), B1{bW ′/bW ′ .i′1})

. . .
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((qI0 , q
W
0 , qW

′
0 , qL0 ), B1′)

!iI→W
m−−−−→

∗−1∞
((qIim , q

W
0 , qW

′
0 , qL0 ), B1′′ = B1′{bW /bW .im})

!i′I→W ′
m−−−−−→
∗−1∞

((qI0 , q
W
0 , qW

′
0 , qL0 ), B2 = B1′′{bW ′/bW ′ .i′m})

At this state, BI sent all indices to BW and BW ′ . He has left messages $
and $′ to send.

!$I→W

−−−−→
∗−1∞

((qI$ , q
W
0 , qW

′
0 , qL0 ), B2′ = B2{bW /bW .$})

!$′I→W ′

−−−−−→
∗−1∞

((qI$′ , q
W
0 , qW

′
0 , qL0 ), B3 = B2′{bW ′/bW ′ .$′})

At this state, bu�ers bW and bW ′ are �lled with indices sent by BI and
BI is in its �nal state. Now, BW and BW ′ will read indices and send corres-
ponding words to BL.

((qI$′ , q
W
0 , qW

′
0 , qL0 ), B3)

?iI→W
1−−−−→

∗−1∞
((qI$′ , q

W
i1,0

, qW
′

0 , qL0 ), B3′ = B3{i1.bW /bW })

?i′I→W ′
1−−−−−→
∗−1∞

((qI$′ , q
W
i1,0, q

W ′
i1,0, q

L
0 ), B3′′ = B3′{i′1.bW ′/bW ′})

!xW→L
1−−−−→

∗−1∞
((qI$′ , q

W
i1,1, q

W ′
i1,0, q

L
0 ), B3′′′ = B3′′{bL/bL.wi1,1})

!x′W ′→L
1−−−−−→
∗−1∞

((qI$′ , q
W
i1,1, q

W ′
i1,1, q

L
0 ), B3′′′{bL/bL.w′

i1,1})

. . .

((qI$′ , q
W
f , qW

′
f , qL0 ), B4)

?$I→W

−−−−→
∗−1∞

((qI$′ , q
W
$ , qW

′
f , qL0 ), B4′ = B4{$ · bW /bW })

?$′I→W ′

−−−−−→
∗−1∞

((qI$′ , q
W
$ , qW

′

$ , qL0 ), B4′′ = B4′{$′ · bW ′/bW ′})

!endW→L

−−−−−−→
∗−1∞

((qI$′ , q
W
e , qW

′

$ , qL0 ), B4′′′ = B4′′{bL/bL.end})

!end′W
′→L

−−−−−−−→
∗−1∞

((qI$′ , q
W
e , qW

′
e , qL0 ), B5 = B4′′′{bL/bL.end′})

At this state, BW and BW ′ have sent all letters to BL and their bu�ers
are empty. Now, BL will compare these letters.

((qI$′ , q
W
e , qW

′
e , qL0 ), B5)

?xW→L
1−−−−−→

∗−1∞
((qI$′ , q

W
e , qW

′
e , qLx1

), B5′ = B5{x1.bL/bL})

?x′W ′→L
1−−−−−→
∗−1∞

((qI$′ , q
W
e , qW

′
e , qL0 ), B5′′ = B5′{x1 · bL/bL})

. . .
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((qI$′ , q
W
e , qW

′
e , qL0 ), B6)

?xW→L
y−−−−−→

∗−1∞
((qI$′ , q

W
e , qW

′
e , qLxy

), B6′ = B6{xy · bL/bL})

?x′W ′→L
y−−−−−→
∗−1∞

((qI$′ , q
W
e , qW

′
e , qL0 ), B6′′ = B6′{x′y · bL/bL})

?endW→L

−−−−−−→
∗−1∞

((qI$′ , q
W
e , qW

′
e , qLe ), B6′′′ = B6′′{end · bL/bL})

?end′W
′→L

−−−−−−−→
∗−1∞

((qI$′ , q
W
e , qW

′
e , qLe′), B7 = B6′′′{end′ · bL/bL})

At this state, bu�ers bL is empty and comparisons of letters have suc-
ceeded, as witnessed by its state qLe′ . If it was not the case, it would be in
state qL∗ . So, it can send message ok.

((qI$′ , q
W
e , qW

′
e , qLe′), B7)

!okL→I

−−−−→
∗−1∞

((qI$′ , q
W
e , qW

′
e , qLok), B7{bI/bI .ok})

Global state (qI$′ , q
W
e , qW

′
e , qLok) reached with this run is the �nal global

state of the network and t ∈ L(N∗−1∞). Thus L(N∗−1∞) ̸= ∅, concluding
this side of the proof.

⇐
If L(N∗−1∞) ̸= ∅ then ∃ t ∈ L(N∗−1∞). As (qI$′ , q

W
e , qW

′
e , qLok) is the

unique �nal global state and by de�nition of language, t is a �nal send trace
and we have: t = act1act2 . . . acte such that

((qI0 , q
W
0 , qW

′
0 , qL0 ), B

∅)
act1=⇒
0

C1
act2=⇒
0

. . .
acte=⇒
0

((qI$′ , q
W
e , qW

′
e , qLok), Be)

Notice that in order to reach qI$ :

� ∃k ∈ N+ such that t contains mI→W
1 , mI→W

2 , . . . , mI→W
k in this order

and mI→W ′
1′ , mI→W ′

2′ , . . . , mI→W ′
k′ in this order,

� ∀i, i′ ∈ [1, k], mW→I
i = jW→I and mW ′→I

i′ = j′W
′→I , with j ∈ [1, n],

i.e., sequences of indices sent by BI to BW and BW ′ are equal.

Moreover, to reach qWe and qW
′

e , we have that:

� ∃ mi,mi′ ∈ t, i, i′ ∈ [1, e], where mi =?jI→W and mi′ =?j′I→W ′
,

j ∈ [1, n], i.e., BW and BW ′ receive at least one index (and send the
associated word),

� ∃ mf ,mf ′ ∈ t, f, f ′ ∈ [1, e], i < f , i′ < f ′, f < f ′, where mf =
!endW→L,mf ′ =!end′W

′→L, i.e., BW and BW ′ send messages of end of
sequence of letters to BL, after receiving at least one index.

Finally, to reach qLok, we deduce that:
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� ∃l ∈ N+ such that t contains mW→L
1 , mW→L

2 , . . . , mW→L
l in this order

and m′W ′→L
1 , m′W ′→L

2 , . . . , m′W ′→L
l in this order,

� ∀i ∈ [1, l], mW→I
i = αW→I and m′W ′→L

i = α′W ′→L, with α ∈ Σ, i.e.,
sequences of letters sent by AW and AW ′ to AL must be equal.

� ∃actz ∈ t such that actz = okL→I and AL can reach qLok.

Then, if the network is in a �nal global state, sequences of letters sent by
AW and AW ′ are equal. So trace t contains a solution of instance (W,W')
that can be found by extracting the messages sent by BI to BW :

Sol(W,W') = (mI→W
1 ,mI→W

2 , . . . ,mI→W
k )

Lemma 6. For all instance (W,W') of PCP where JW,W ′Kmail = N ,
(W,W') has a solution if and only if L(N0) ̸= L(N∗−1∞).

Proof. Let (W,W') be an instance of PCP.
⇒

By Lemma ??, if (W,W') has a solution, then L(N∗−1∞) ̸= ∅. By
Lemma ??, we know L(N0) = ∅. Thus, if (W,W') has a solution, then
L(N0) ̸= L(N∗−1∞).
⇐

By Lemma ??, L(N0) = ∅. If L(N0) ̸= L(N∗−1∞) then L(N∗−1∞) ̸= ∅.
So, by Lemma ??, (W,W') has a solution.

Theorem 2. The Synchronizability Problem is undecidable for mailbox sys-
tems.

Proof. According to Lemma ??, an instance of PCP has a solution if and only
if the language of the mailbox encoding of this instance is not synchronizable.
The encoding of the Post Correspondence Problem is a reduction to the
Synchronizability Problem for mailbox systems. The Post Correspondence
Problem is an undecidable problem, then the Synchronizability Problem for
mailbox systems is undecidable.
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